If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = 5x2 + 27x + -18 Reorder the terms: 0 = -18 + 27x + 5x2 Solving 0 = -18 + 27x + 5x2 Solving for variable 'x'. Combine like terms: 0 + 18 = 18 18 + -27x + -5x2 = -18 + 27x + 5x2 + 18 + -27x + -5x2 Reorder the terms: 18 + -27x + -5x2 = -18 + 18 + 27x + -27x + 5x2 + -5x2 Combine like terms: -18 + 18 = 0 18 + -27x + -5x2 = 0 + 27x + -27x + 5x2 + -5x2 18 + -27x + -5x2 = 27x + -27x + 5x2 + -5x2 Combine like terms: 27x + -27x = 0 18 + -27x + -5x2 = 0 + 5x2 + -5x2 18 + -27x + -5x2 = 5x2 + -5x2 Combine like terms: 5x2 + -5x2 = 0 18 + -27x + -5x2 = 0 Factor a trinomial. (3 + -5x)(6 + x) = 0Subproblem 1
Set the factor '(3 + -5x)' equal to zero and attempt to solve: Simplifying 3 + -5x = 0 Solving 3 + -5x = 0 Move all terms containing x to the left, all other terms to the right. Add '-3' to each side of the equation. 3 + -3 + -5x = 0 + -3 Combine like terms: 3 + -3 = 0 0 + -5x = 0 + -3 -5x = 0 + -3 Combine like terms: 0 + -3 = -3 -5x = -3 Divide each side by '-5'. x = 0.6 Simplifying x = 0.6Subproblem 2
Set the factor '(6 + x)' equal to zero and attempt to solve: Simplifying 6 + x = 0 Solving 6 + x = 0 Move all terms containing x to the left, all other terms to the right. Add '-6' to each side of the equation. 6 + -6 + x = 0 + -6 Combine like terms: 6 + -6 = 0 0 + x = 0 + -6 x = 0 + -6 Combine like terms: 0 + -6 = -6 x = -6 Simplifying x = -6Solution
x = {0.6, -6}
| 5r+4=35r+9 | | x^2-6x+y^2+8y+16=0 | | 3x+5x+10=180 | | 12-.75x=8 | | -1=0.25x | | (3x^2-7)^3/2 | | 1/x=18.6 | | -8+1=8 | | 3-1(2x+3)=19 | | 15-6x=9-6x | | X/8-7=10 | | https://micatime.com/Asset/Item/60/f97363fab5af0be8303667b28f91.png | | (81c^4)^(1/4) | | 8(3s+6)=168 | | 3n+2=19 | | (81c^4)^1/4 | | -3(y+1)=-6y-6 | | 5u+19=2(u-4) | | 4x^4-8x^3+4x^2-16=0 | | A=0.5(9)(h) | | 36=4(u+3)-7u | | s(21+7)=95 | | 2x-70=3y | | 3x+3y-2x*y=0 | | 5(21+7)=95 | | 2y=112-8x | | x+9.12=17 | | sin(-7π/8) | | y=lx-1l-lx+1l | | 3u=10-2u | | 0=3x^2+5x-8 | | 3(a-1)=54 |